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Oscillation of a floating body in a viscous fluid 

Ronald  W. YEUNG and P. ANANTHAKRISHNAN 
Department of Naval Architecture and Offshore Engineering, University of California at Berkeley, CA 94720, 
USA 

Abstract. The nonlinear viscous-flow problem associated with the heaving motion of a two-dimensional floating 
cylinder is considered. It is formulated as an initial-boundary-value problem in primitive variables and solved using a 
finite-difference method based on boundary-fitted coordinates. A fractional-step procedure is used to advance the 
solution in time. As a case study, results are obtained for a rectangular cylinder oscillating at a Reynolds number of 
103 . The nonlinear viscous forces are compared with those of linear potential theory. An assessment on the 
importance of viscous and nonlinear effects is made. The solution technique is sufficiently robust that extensions to 
consider other single and coupled modes of motion are possible. 

I.  Introduction 

Many investigations have been carried out in the past to understand the fluid-dynamics 
processes associated with oscillating bodies in a free surface. From a practical viewpoint, 
such investigations are significant since the results are used for estimating wave loads 
experienced by offshore structures and for predicting motion response of ocean vehicles. 
Classical first-order potential-theory results are known to be reasonably accurate for the case 
of small-amplitude motion in the intermediate range of wave frequencies (see Wehausen 
[27]). Second-order analyses (e.g. Potash [20], Sclavounos [21]) indicate that nonlinear 
effects are important in the high-frequency regime. 

A more direct approach to the fully nonlinear potential-flow problem is by time domain 
analysis. Several variants of a mixed Eulerian-Lagrangian boundary-integral method, origi- 
nated by Longuet-Higgins and Cokelet [18], have been developed (e.g. Vinje and Brevig 
[25], Baker et al. [2], Cooker et al. [9]) for obtaining nonlinear inviscid solutions to 
wave-body interaction problems. This mixed formulation can also be implemented using 
finite-difference methods (see e.g. Telste [24], Yeung and Wu [28]). Telste [24], who 
considered the heave oscillation of a surface-piercing cylinder, was able to demonstrate the 
importance of nonlinear effects at high frequency and of large-amplitudes of oscillation. 

Despite some known, important effects of viscosity, such as in damping of roll motions, in 
loads induced by vortex shedding, etc., relatively few cases of viscous-flow analyses have 
been carried out in this area. Using an extended version of the Marker-and-cell (MAC) 
method originated by Harlow and Welch [12], Nichols and Hirt [14] computed the hydro- 
dynamic forces on a surface-piercing cylinder heaving with small amplitudes. More elaborate 
versions of the MAC method have been continually developed. For example, Miyata et al. 
[19] solved a wave-diffraction problem using a version called TUMMAC. The computed 
results in [19], however, showed large deviations in horizontal exciting forces from those of 
experimental results. 

The primary difficulty encountered in tackling viscous-flow problems is that the Navier- 
Stokes equations are nonlinear with the unknown variables pressure and velocity coupled 
together. The use of vorticity and stream-function formulation would allow one to decouple 
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the pressure and velocity fields. However, the procedure can neither be easily extended to 
the three-dimensional case, nor be used to accommodate stress-type boundary conditions in 
any straightforward manner. 

Viscous-flow problems with free boundaries have further complications. The problem 
associated with contriving a proper open-boundary condition is nontrivial (see Yeung [29]). 
Waves of large amplitude often lead to skewed or extreme geometry, imposing rather 
stringent demand on domain-discretization techniques. Proper discretization is imperative, 
otherwise boundary conditions cannot be accurately implemented and detail structures such 
as vorticity generation cannot be effectively resolved. Finally, no completely satisfactory 
model has yet been devised to model the movement of the contact line (intersection of the 
body and free surface). 

Recently, the authors have completed the development of a numerical method based on 
boundary-fitted coordinates for solving fully nonlinear viscous free-surface flow problems 
(see Ananthakrishnan [1]). The solution of the Navier-Stokes equations in primitive 
variables is based on the fractional-step method originally formulated by Chorin [7], Temam 
[23] and others. Briefly, an intermediate velocity field (also referred to as the 'auxiliary 
field') is first computed by neglecting the pressure terms. The pressure field is obtained by 
solving a Poisson equation. The correctional effects of pressure are then incorporated into 
the auxiliary field to determine the divergence-free velocity field. Our fractional-step 
formulation is implemented using a finite-difference method based on boundary-fitted 
coordinates. A variational formulation involving the concept of a reference space (see 
Steinberg and Roache [22], Yeung and Ananthakrishnan [31]) is used to generate grids. 
Previously, using this grid-generation technique in conjunction with the mixed Lagrangian- 
Eulerian formulation, we were able to obtain highly nonlinear inviscid-flow solutions, such as 
shallow-water breaking waves [30] and wave diffraction over submerged obstacles [32]. 

In the present work, we use the above finite-difference procedure to solve the nonlinear 
viscous-flow problem associated with heaving motion of a floating body. Solutions are 
obtained for a range of physical parameters, including the possibility of large amplitude of 
body oscillation. 

2. Mathematical  formulation 

Notations and definitions of the problem being studied are described in Fig. 1. A fixed 
(inertial) coordinate system with the x-axis along the mean water level and the y-axis 
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Fig. 1. Cylinder heaving in a viscous fluid, problem definition and notations (in dimensional form). 
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pointing upwards is chosen. The equilibrium draft of the rectangular body is denoted by d 
and the beam by B. The amplitude and frequency (in rad/sec) of oscillation are given by a 
and o-, respectively. The free surface is denoted by ~,  the body contour by ~ ,  and an open 
boundary by E. The kinematic viscosity coefficient of the fluid is denoted by u, its density by 
p, and the gravitational acceleration by g. The governing equations will be nondimensional- 
ized with respect to B, p, and or. Accordingly, time is scaled by l&r, length by B, velocity by 
o-B, pressure by RB2o v2, a n d  force by pB3cr 2. We will henceforth adopt this nondimensional- 
ized notation. Where convenient, subscripts followed by a comma (,) will be used to denote 
partial differentiation with respect to the subscripted variables. 

2.1. Field equations 

The field equations governing the viscous wave problem are the Navier-Stokes equations: 

V - u = O  (1) 

and 

1 0u +(u.V)u=-V p+ y +~V2u 
Ot (2) 

which are derived using the conservation laws of mass and momentum, with the fluid being 
assumed incompressible, homogeneous, and Newtonian. The unknown variables u = 
u(x, t) = (u, v) and p(x, t) are the velocity and pressure fields, respectively. As is commonly 
known, the second term on the left-hand side is associated with convective effects of the fluid 
and the last term on the right-hand side with diffusion effects of viscosity. In the above 
equation, R~ and F~ are defined by 

o-B 2 
R~ - , (3) b' 

F = e "  , (4) 

which will henceforth be referred to as the Reynolds number and as the frequency 
parameter, respectively. 

2.2. Boundary conditions 

On if, in the absence of surface tension, continuity of stress vector components along the 
normal and tangential directions provides the following dynamic conditions: 

n iTqnj =- 0 ,  (5)  

%Tqnj = O, (6) 

where 
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Tq = -pSq + - ~  l Oxj + Ox i J (7) 

is the stress tensor in the indicial notation. (nl, n2) and (~'1, ~'2) in equations (5) and (6) 
denote the components of unit normal- and tangential-vectors, respectively. 

The unknown elevation of the free surface can be tracked in time by integrating the 
following Lagrangian description of 

D 
Dt x u ,  (8) 

where D/Dt denotes the material derivative. For non-breaking waves, the following Eulerian 
description can also be used to advance the free-surface elevation, y = Y(x, t): 

OY OY 
- -  ~ U - -  U - -  . at Ox (9) 

The body is forced to heave (vertically) in the form of 

a 
yb( t )=Yb(O)+-~s in ( t ) ,  t t>0 ,  (10) 

where yb(t) represents the y-coordinate value of any point fixed to the rigid body. The 
prescribed motion can be arbitrary, but sinusoidal motion is chosen here merely for 
illustration. On the body surface 03, the appropriate no-flux and no-slip conditions are 
imposed: 

u = 0 ,  (11) 

a 
v = ~ cos(t). (12) 

Approximate conditions are used at the intersection of the body and the free surface to 
model its movement. Several experimental and theoretical investigations have been devoted 
solely to examine the precise mechanisms occurring near the contact line (see e.g., Dussan 
[10], Huh and Mason [15], Koplik et al. [170, but the findings are still inconclusive. Hence, 
as an approximation, we find it plausible to assume that the fluid slips freely at the contact 
line; in other words, 

Ou 
- - = 0  at 03fqo~ (13) 
ax 

is assumed for computing the y-component of the velocity. The horizontal component of the 
velocity at 03 A ~ is given by the no-flux condition (11). 

Approximate conditions are also used, in the present work, for the closure of the problem 
at the open boundary E. Accordingly, at sufficiently large distance from the body we assume 
that 

p =ps,~,, (14) 

where Pstat denotes the pressure field of the quiescent fluid (see Grosenbaugh and Yeung [11] 
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for a similar treatment of an inviscid flow problem). An auxiliary velocity at E is determined 
by first-order spatial extrapolation. A decomposition relation, which is a consequence of the 
fractional-step procedure, is used to determine the unknown velocity at E. Specific details of 
the fractional-step procedure are given later. 

The above open-boundary condition can result in wave reflections when the radiating 
waves reach E. The steady-state, inviscid-fluid dispersion relation of deep-water gravity 
waves, i.e. 

a = 2rr/F 2 , (15) 

where A is the nondimensional wavelength, can be used to position the open boundary 
sufficiently far so that wave reflections occurring at E during the course of the simulation are 
negligibly small. However, transient waves of larger wavelength may reach the boundary 
sooner. 

The field equations together with the given boundary conditions are solved as an 
initial-value problem. The initial data are taken to be those of the static (quiescent) fluid 
case. The body motion is started impulsively at t = 0 +. 

2.3. Force calculation 

At each instant of discrete time (after solving for the unknowns, namely u, p, and the 
free-surface elevation, using the above field and boundary equations), the vertical compo- 
nent of the stress vector can be integrated along ~ to determine the nondimensional heave 
force F exerted by the body: 

L f~{ 1 (Ou OV) (_p ~_~ ~yy)n2}ds ' (16) F = -  T2;n] d s = -  ~ -ff-fy + ~x n, + + 2 0 v  

where ds is 
term in the 
(bearing in 
shear-stress 

the differential (arc-length). One can also compute the contributions of each 
above equation in order to estimate viscous- and pressure-term contributions 
mind, however, that pressure is affected by viscosity also). Thus, the viscous 
component F~ of the heave force can be written as 

OU Ov 
' (~y +~x)nldS, (17) C -  R~ 

and the normal viscous-stress component/7, as 

2 f o r  F.-  n as. (18) 

Subtracting the static-pressure component (-y/F]) from the total pressure p, we can 
compute the dynamic-pressure force Fp as 

Y n  Fp=f~ (p+ r2 ) zds. (19) 
t ' ,7 

Once the velocity field is known, the vorticity field 
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Ov Ou 
o)(x, t) - Ox Oy 

can also be computed. 

(20) 

3. Method of numerical solution 

As shown in Fig. 2, the physical space (x, y; t) is mapped to a computational space (£,  77; T) 
so that the governing equations can be solved in a uniform rectangular mesh. The mapping 
introduces the following transformation relations 

1 
O x = ~  { y , ~ O ~ - y , ~ O ~ } ,  (21) 

1 
O y = ~ {-x, .O,~ + x eO. } , (22) 

x,r Y,r 
O r = O r -  j-~ (y..O e - y , e O  . ) - - ~  ( - x n O  a + x,eO,n), (23) 

where 

Ji = x.#y., - x , y , ,  (24) 

is the Jacobian of the transformation of (x, y; t) to (~:, 77; T). Similarly, one can show, as an 
example, that the Laplace operator in (x, y; t) space when transformed to (~, 7; T) space 
becomes 

O,x x "~- a,yy : AO,~ - 2Ba,¢, + C0.~ + EO,~ + Fa., , (25) 
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Fig. 2. Grid generation using reference space. 
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where 

2 + 2 2 
x ~ y . ,  x ex ~ + y.~y. ,  x~e + y.¢ 

A -  B =  ' ' C = -  j21 ' j21 ' j~ 

E = ~ + ~yy , F = ~7,~ + ~,yy • 

These relations will be used to transform the flow equations, given in Section 2, to the 
computational space. 

3.1. Boundary- f i t ted coordinates 

A grid-generation procedure developed earlier (see Yeung and Ananthakrishnan [31]) has 
also been used in the present work to implement the coordinate mapping. This is based on a 
variational formulation (see Brackbill and Saltzman [6]) in conjunction with the notion of a 
reference space introduced by Steinberg and Roache [22]. The crux of the procedure is that a 
geometrically-similar intermediate space (a, 13) is first discretized, and its properties are then 
transferred to the physical mesh. This is illustrated in Fig. 2, which is taken from Yeung and 
Vaidhyanathan [32]. The intermediate space is geometrically simpler than the physical space 
(see Fig. 2) so that it can be discretized easily, for example, by using simple algebraic 
relations. The intermediate space is also discretized in such a way that its grid properties 
such as cell-area distribution and coordinate spacings are also the ones desired in the physical 
space. For instance, the present problem requires finer resolution of the region near the 
body and the free surface so that viscosity effects can be accurately resolved. The desired 
grid properties, that are first achieved in the intermediate-space, are then transferable to the 
physical mesh by minimiz ing  the following functionals: 

* f f  d x d y  l~Tx ,y~12Wl~x,y~[2- f f  do~d/3 1~7a,fl~:[2 +1Va,/37112 , I s ( ~ , n )  = ~ (26) 

= f f dx  dy J 2 (27) I*~ ( ~, n )  ~, , 

f f n}  J 1 ,  Io(~'~7)* = a dx  dy  {Vx.y ~- V,. r 2 3 (28) 

where the subscripts s, c, and o on the left-hand side represent the grid properties, viz. 
smoothness, cell-area, and orthogonality, respectively. Equation (26) is a measure of the 
difference, in coordinate spacings, between the physical and the reference spaces. The term 
-/2 in equation (27) denotes the Jacobian of the mapping of the physical space onto the 
reference space ( J 2  = x j . ~  - x ~ y . ~ ) .  Note that equation (28), the orthogonality functional, 
corresponds to the direct mapping of (x, y; t) to (~, ~7; T) given originally by Brackbill and 
Saltzman [6]. We do not use the reference space to specify the angular properties of the 
coordinates. This is because it is preferable to have orthogonal or nearly orthogonal grids for 
accurate implementation of Neumann-type boundary conditions. 

The field equations corresponding to the functionals (26) to (28) are given below: 
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Smoothness 

01x '~  - 2 ~ x ' ~ n  + cr~x'nn = - J-~3 

J1 
01y,~ ~ - 2 r l y ,¢"  + tr, y . . .  = - ~ 3  { ( f l . . X  - a . t . t ) y , ~  + ( - f l , ~ X  + a , e l x ) y , . }  , 

where 

.¥ = 030~,~: e --  2 K 3 a . ¢  n + O'30~ r/r / , ~Z = 03fl,tj¢ --  2K3f l ,  e n + O'3~,rlr / , 

The coefficients in the above equations are given by 

0 1 = x Z + y , 2  , 

o3 = + 

~i = x ex, .  + y . e y , .  , 

K3 ~" Ol,~ Ol,'O "J¢- ~,,f fl,rt ' 

2 
trz = x e + y,e , 

= + 

(29) 

(3o) 

J~3 {b°~x'~ + b°~x'~ + bvax'nn + av~Y '~  + a v 2 y ' ~  + a v 3 y ' n n }  = - J ~  ~ x  

j ~  { a v l x , ¢  ~ + av2x,~ ~ + a~3x,~ ~ + c o , y , ~  + cv2y. ,  ~ + co3y,~n} = - J ~  ~y  

where 

av~ = - x . y , . ,  by 1 = y , 2 ,  co z = x 2 ,  

av2 = x ~y. .  + x ny.~ , by2 = - 2 y , ~ y , .  , 

2 2 
a v 3  = - x  ey,e , by3 = y,e , c o 3  = x ~ . 

Orthogonality 

bolX,# ~ + bo2X e ~ + bo3X n n + aolY,e ~ + ao2Y,e ~ + ao3Ymn = 0 ,  

ao~X ~ ~ + ao2X ~ ~ + ao3X,n n + ColY,e ~ + Co2Y,¢ ~ + Co3Y,n n = 0 ,  

where 

aol = x ~y . .  , bo, = x2n , Col = y,% , 

ao2 = x,aY,,7 + x,,TY,~ , bo2 = 2(2x,~x,,7 + Y,eY,,7) ' Co2 = 2(2y,¢Y,,7 + x,~x,'7) ' 

2 
a o3 = x j , ¢ ,  b o3 ----- X,2~ , Co3 = y.~ • 

co: = - 2 x  e x . ,  

(31) 

(32) 

(33) 

(34) 

Cell-area distribution 

and J3 (= a , ¢ f l , ~ -  a fl,~) is the Jacobian of the mapping of the reference space to the 
computational space. 
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A linear combination of the above field equations taken as 
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Le = ,~s~'s + x c ~ c  + X o ~  o , (35) 

where the As and ~'s denote respectively, user-specified weighting values and field equations, 
are solved. The A values are to be chosen as per the desired levels (or relative importance) of 
smoothness, cell-area variations and orthogonality, required in a particular problem. At each 
time step, the field equations for the grid are solved subject to the location of boundary 
points. 

3.2. Fractional-step formulation 

The mapping relations (21) to (25) are used to transform the governing equations to the 
(~,r/; T) space. This is a straightforward workout in calculus but resulting in lengthy 
expressions. We will therefore, for the purpose of exposition here, present explicitly only the 
terms in the transformed equations that are essential for the description of the solution 
method. Remaining terms will be denoted simply by using symbols. Also, for brevity, we 
retain the notations used in Section 2 to denote differential operators; e.g., the gradient 
operator 7 now represents 

(1 1 ) 
V=(Ox, O v)= ~ {y,,O a-y,eOn}, fl {-x'~O'a +x'eo'n} " (36) 

The auxiliary velocity field u ~ux is first determined by using the momentum equations 
without the pressure term [8]: 

( 1  - -  q ) u  aux = 8T {u" - N" + ~ " } ,  (37) 

where the superscript n denote the current instant of discrete time at which solutions are 
known. ?¢,n and 9 "  are the known terms corresponding to the discretized form of the 
coordinate-transformed convection and diffusion terms, respectively. The term q on the 
left-hand side represents the possibility of implicit differencing. In the case of explicit 
differencing (in time), q = 0. 

The discretized form of the full transformed momentum equation can be written as 

y ,],,+1-~ 
(38) 

A comparison of equations (37) and (38) leads to 

°"" ( u =un+t + ( 1 -  q)-I 8TV P + F 2  / , (39) 

where 

V ' u  "+I = 0 .  (40) 

In other words, U a u x  c a n  be expressed as a direct sum of u "+L and pressure fields. Equation 
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(39) can be conveniently rewritten as 

U . . . .  - -  u "+l  + V ~ " + l  , ( 4 1 )  

where 

_ ( y)n+, 
n+l ( l - - q )  1 q~ --= 8T p + ~-~2/ , (42) 

which should not be mistaken as a velocity potential. Note that equation (42) gives a 
one-to-one relation between q~ and p + y/FZ~ which is dependent on the scheme (i.e., 
dependent on q). 

Once the auxiliary field has been evaluated using equation (37), equation (41) can be used 
to determine Vq: ÷~ and U n+l. The decomposition can be carried out either sequentially or 
iteratively. Following Kim and Moin [16], we use the following sequential procedure. The 
Poisson equation for q~ 

V 2 ~  = V "  U aux , (43) 

obtained by taking the divergence of equation (41), is solved first for q~ (and hence p through 
equation (42)). The correctional effects are then added to the auxiliary field through 
equation (41) to obtain n"+l: 

U n +1 = uaUX __ ~7~ n +1 ( 4 4 )  

We will elaborate on the boundary conditions needed for the evaluation of u aux, q~ etc. in the 
next subsection, after providing a glimpse of some related theoretical aspects in the following 
paragraph. Details can be found in the cited references. 

In problems where the normal component of velocity is zero on the boundary, as in flows 
bounded by rigid boundaries, one can show using Gauss theorem that u n+ 1 and V~ fields are 
orthogonal to each other (see Chorin [7]). The orthogonality of the pressure-gradient and 
the divergence-flee-velocity fields, as stated by Bell et al. [5], "effectively eliminates pressure 
from the system while enforcing 1.2 [the equation of continuity]; in fact, specifying pressure 
boundary conditions overdetermines the system". Consequently, the decomposition (41) can 
be expresses as 

U n+l = ~ U  aux (45) 

V ~  " + 1  = ~ U  aux = ( ~  - - ~ ) U  aux , (46) 

where ~ and 2~, not explicitly given here, are orthogonal operators which project u aux onto 
the divergence-free u "÷~ and Vq~ fields, respectively. The term 5~ in equation (46) denotes the 
unit operator. In the case of free-surface flows, however, the divergence-free velocity and 
pressure-gradient fields are not orthogonal. Hence, operating the free-surface Navier-Stokes 
equations with the projection operator ~ would not eliminate the pressure term. The 
projected pressure term, nevertheless, is determined by the free-surface pressure condition 
(see Beale [4]). These observations indicate that the velocity boundary conditions on the 
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body and the stress conditions on the free surface, as given in Section 2, are sufficient for the 
solution of the pressure and velocity fields. 

3.3. Implementation of boundary conditions 

In the present work, physical conditions (given in Section 2) and the decomposition relation 
(41) are taken into account for obtaining numerical boundary conditions for u aux, (Vq0 ~÷1, 
and u ~+ l. Uniform validity of the equation (41) in space is important for obtaining accurate 
solutions in a consistent manner (see Kim and Moin [16]). 

On 50, we use 

aux = u "+I (47) u . n  - n ,  

0 uaUX "/' = U n + l  '3" .4_ ~ ( ( p n ) ,  ( 4 8 )  

(where n and ~- denote unit vectors in the normal and tangential directions, respectively) to 
specify the values of u"UXon 50. Equation (47), in view of equation (41), provides the follow- 
ing homogeneous Neumann condition for q~n*', 

L ((.IO n +1) : O.  ( 4 9 )  
On 

Note that u n+~ is given by the no-slip conditions (11) and (12). It is determined by the 
free-slip equations (11) and (13) at the contact points 50 f) o%. The location of the body is 
determined by the forced oscillation, i.e. by equation (10). 

On the free surface ,~, we use an approximation of equation (41) to specify the auxiliary 
velocity value: 

. . . .  ( 5 0 )  U ~ U  + V q ~  ~ • 

A two-step predictor-corrector type iterative procedure is applied to the flee-surface stress 
equations for determining u n+l and ~n+l (see Ananthakrishnan [1] for details). Basically, we 
begin with the known value of ~ from previous instant of time and use it as the Dirichlet 
condition for the solution of the Poisson equation. Equation (41) is then used to predict u n+~ 
in the fluid domain. Stress relations, rewritten as Neumann-type relations for u and o in 
(£ , r / ,  T) space, are then used to get the first estimate of u n+~ on if*. The normal-stress 
condition with the predicted velocity thus provides the Dirichlet condition for q~ at the 
corrector stage. The remaining steps in the above predictor stage are again repeated in a 
similar manner for correcting u n÷l and for updating ~+~.  Concurrently, the kinematic 
condition (8) or (9) is also integrated using the predictor-corrector method to advance the 
free surface. The above two-step procedures thus require the solution of Poisson equation 
for ¢ twice at each instant of time. 

At  the open boundary E, we obtain a Dirichlet condition for ~ from the approximation 
(14), using the scheme-dependent relation (42) between p and ~. The auxiliary-field u aux is 
determined by first-order spatial extrapolation, u ~÷~ is then computed using the decomposi- 
tion relation (41), i.e. as 

n+l  uaUX n+l  
u = - V ~  ( 5 1 )  
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3.4. Numerical schemes 

Several schemes to discretize the convection and diffusion terms in the transformed 
momentum equat ion-e .g ,  first-order upwind, second-order Adams-Bashforth, forward- 
time central-space, implicit Crank-Nicholson, e t c . -  have been considered by Ananthakris- 
hnan [1] in order to evaluate the comparative merits of these schemes applied to viscous- 
wave problems. In the present work, we use one of the many sets of procedures that have 
been studied. This procedure consists of using an upwind differencing for the treatment of 
coordinate transformed convection terms and central-differencing for discretizing the diffu- 
sion terms; both of these schemes are explicit, and hence q = 0 in equation (42). 

The Poisson equation (43) is centrally-differenced and solved by a Gaussian elimination 
based on LU-decomposition; the code requires the storage of (and operations in) only the 
non-zero band of the coefficient matrix. The grid equations, also centrally differenced, are 
solved iteratively using mixed over-under relaxation method. 

4. Results and discussion 

In this section, as a case study, results obtained for a simple section over a range of F~ and 
a/B values are presented. A mesh size of (121 × 41), with coordinates clustered near the 
body and the free surface, is used for the discretization of the physical space. The value of 
R~ is set to be 103 for all cases, which is appropriate for the above mesh size. A time-step 
size of 0.02, which satisfy stability criteria posed by linear convection and diffusion problems 
on the numerical schemes (see Hirsch [13]), is used in all cases. Velocity scales associated 
with both body velocity and wave celerity are taken into account in satisfying the Courant 
condition. For grid generation, the physical space with free surface replaced by fiat 
horizontal surface is used as the reference space. This allows discretizing the reference space 
by simple algebraic interpolation. We remark that this is not a restriction on the grid- 
generation method. For example, for breaking-wave type problems, grids generated at 
previous instants of time can effectively be used as the reference mesh (see Yeung and 
Vaidhyanathan [32]). 

4.1. Flow structure 

First, in order to illustrate the intricate details of the vorticity/vortex generation around the 
oscillating body, velocity-vector and vorticity-contour plots corresponding to a typical case of 
large-amplitude of oscillation (a/B = 0.2, d/B = 0.5, F~ = 2.0) are shown in Figs 3a-3d. 
These figures correspond to instants of discrete time that are roughly one-quarter period 
apart. Figure 3a corresponds to t = 0.999~r (where ~r here denotes the period of oscillation) 
when the body is ascending. As can be observed, the flow is primarily into the void 
generated by the upward movement. Note the incipient formation of wake eddies near the 
sharp edges. Fully developed wake vortices can be seen at a later time during the periodic 
motion, see e.g. at t = 1.2477" (Fig. 3b). A small asymmetry in the flow field about the 
centerline (x = 0) can be noticed in the vorticity-contour plot. In this plot, generation of 
free-surface vorticity, which is rather weak because of small surface curvature, can also be 
seen. The entire flow picture changes as the body is descending (see Fig. 3c, corresponding 
to t = 1.499 J'). The wake eddies that have been formed earlier (during the ascent) undergo 
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Fig. 3. Velocity-vector and vorticity contour plots for R~ = 103, f~  = 2.0, a/B = 0.2, d/B = 0.5,  at (a) t = 0.999~ r, (b) 
t =  1.247T, (c) t =  1.499T, and (d) t =  1.814~ r. ~r is the period of  oscillation. In the velocity-vector plots, the 
horizontal line in the body denotes  the calm water level. The solid lines in the vorticity-contour plots denote 
negative (clockwise) vorticity and dotted lines positive (counterclockwise) vorticity. 
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diffusion while being convected downwards. The vorticity field is now dominant in the shear 
layer generated along the sides near the sharp edges. One can notice the formation of 
vortices in the side shear layers. Finally, in Fig. 3d, which corresponds to t = 1.814T, the 
outward translation of the vortices formed earlier (in Fig. 3c) can be clearly seen. The 
primary flow at this time is again (as in Fig. 3a) into the bottom void as the body is 
ascending. In all of the above vorticity-contour plots, partial shedding of vorticity into the 
fluid can be observed. 

4.2. Force calculations 

First, heave-force components for a typical case (d/B = 1.0, F~ = 2.0 and a/B = 0.3) are 
shown in Fig. 4. These shear-stress, viscous normal-stress, and dynamic-pressure components 
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Fig. 4. P r e s s u r e  a n d  v i s c o u s - s t r e s s  c o n t r i b u t i o n s  t o  t h e  h e a v e  f o r c e  a t  R~ = 103, F ,  = 2 .0 ,  a/B = 0.3, d /B  = 1.0. 
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of the heave force are computed using equations (17) to (19). As can be observed in the 
figure, the pressure component is much larger than those of the viscous stress components. 
This is a well known fact for flows past bluff bodies with sharp edges. In the present case, the 
shear-stress contribution is about 10%, while that of the normal viscous stress is only about 
1%, of the pressure force. The shear stress contribution will be even smaller at higher 
Reynolds-number flows. It should also be pointed out that the calculation of the shear stress 
requires a fine spatial resolution of the boundary layers. Because of the smallness of the 
viscous stress contribution, we will henceforth retain only the pressure term in the force 
computations. 

In order to determine the influence of the amplitude and frequency of oscillation in the 
nonlinear heave forces, the following cases are studied: 

F~ = 2 .0 ,  Case (i): a/B = 0.1,  Case (ii): a/B --- 0.2 ; 

F~ = 1.5, Case (iii): a/B = 0.1,  Case (iv): a/B = 0.2 ; 

F~ = 1.0, Case (v): a/B = 0.1,  Case (vi): a/B = 0.2. 

The draft-to-beam ratio d/B is set to be 0.5. Cases (i) & (ii) are presented in Fig. 5, (iii) & 
(iv) in Fig. 6, and (v) & (vi) in Fig. 7. The heave forces are normalized with respect to the 
amplitude of oscillation; i.e. presented as F/(a/B),  where F now is only the pressure 
component  given by equation (19). The nonlinear viscous results are compared with those of 
linear, potential-flow, frequency-domain, steady-state results. The linear results are obtained 
using the solution method developed by Yeung in [33]. 

For purpose of reference, a sine curve y(t) = 0.2 sin t, is drawn to indicate the position of 
the body. The value 0.2 is chosen merely for clarity. 
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Fig. 5. N o r m a l i z e d  v iscous  h e a v e  forces  for  F~ = 2.0,  R = 10 3, d/B --- 0.5 at  a m p l i t u d e s  a/B = 0.2 and  a/B = 0.1. 
For  c o m p a r i s o n ,  l inear  po ten t ia l  resul ts  ( Y e u n g  [33]) is g iven.  Sine curve  y(t) = 0.2 sin t indica tes  body  pos i t ion .  
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Fig. 6. Normalized viscous heave forces for F~ = 1.5, R = 103, d/B = 0.5 at amplitudes a/B = 0.2 and a/B = 0.1. 
For comparison, linear potential results (Yeung [33]) is given. Sine curve y(t) = 0.2 sin t indicates body position. 
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Fig. 7. Normalized viscous heave forces for F~ = 1.0, R~ = 10  3, d/B = 0.5 at amplitudes a/B = 0.2 and a/B = 0.1. 
For comparison, linear potential results (Yeung [33]) is given. Sine curve y(t) = 0.2 sin t indicates body position. 
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In all of the nonlinear viscous-flow calculations, negatively large values are found at the 
start of the simulation. Recall that the body motion is stated impulsively at t = 0 +. For such 
impulsively started motion in a viscous fluid, it has been shown that the stress on the body 
surface is square-root singular in t at t = 0 ÷ (see Bar-Lev and Yang [3]). However, this 
negatively large value seems to perpetuate only for a short duration of time. 

Since the force curves are normalized with respect to the amplitude of oscillation, 
deviations in force curves of different a/B values would indicate nonlinear effects. Devia- 
tions of the computed results with respect to that of the linear, potential-flow theory is a 
measure of both nonlinear and viscosity effects. The phase shift of the force with respect to 
the body motion is attributed to the damping component (in phase with velocity) of the 
hydrodynamic forces. 

Based on the results given in Figs 5-7, the following observations can be made: 

• Inspection of results reveals that steady-state is reached within about two periods of 
oscillation. 

*The negative phase shift of the linear potential force is small at F~ = 2.0, since wave 
damping is almost negligible in this relatively high frequency regime (Fig. 5). However, it 
can be seen that the wave-damping component is quite large at the lower frequency 
F~ = 1.0 of oscillation (Fig. 7). 

• The phase shift is more negative (compared to linear potential results) in the case of 
nonlinear viscous solutions. It can also be observed, in general, that the phase shift 
increases with the increase in the amplitude of oscillation. This indicates the effect of 
viscosity on damping. 

• In the high-frequency regime (e.g. Fig. 5), the amplitude of the computed viscous forces is 
close to that of the linear, potential-theory results when the amplitude of oscillation is 
small. This is consistent with the analytical results of Yeung and Wu [34]. It can also be 
observed that the negative peak of the force curve is larger in magnitude than that at the 
positive peak, a known nonlinear effect. The computed viscous forces deviate substantially 
from those of potential flow at low frequency (see Fig. 7). 

• In general, the normalized heave forces are larger when the amplitude of oscillation is 
large. This increase is more dramatic at low frequency (Fig. 7). 

• At large amplitude of oscillation, a rather uniform spiky behavior can be observed during 
the second quarter of the periodic motion (see Figs 5 and 6). During this interval, as shown 
in Figs 3b and 3c, eddies formed in the wake are convected and diffused, and the vortices 
at the sides near the sharp edges are also developing. It is believed that the spikes in the 
force results are caused by the drastic pressure changes accompanying the generation of 
these vortices at the edges. However, no such spiky pattern is observed at the smaller 
amplitude of oscillation. 

Finally, to better elucidate the structure of the vorticity fields, we show in Fig. 8 a color 
plot of the vorticity contours corresponding to two different motion amplitudes (a/B = 0.1, 
0.2). Both plots in this figure correspond to d/B = 0.5, F~ = 2.0, and t = 1.2477". Note that 
the contours are given in the computational space. The actual vortical structure in the 
physical space will be slightly distorted from these plots because of coordinate mapping. It 
can be seen that the intensity of the vorticity field is larger in the case of larger amplitude of 
oscillation. Vorticity generation at the free surface, because of its curvature, can also be seen 
in the case of large-amplitude motion. 
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Fig. 8. Vorticity structure generated around cylinder, effects of amplitude of motion (shown in computational 
space); F~=2.0, R~=103, d/B=0.5, and a/B=O.1, a/B=0.2. Positive contours (green and red spectrum) 
correspond to counterclockwise vorticity and negative contours (blue and pink spectrum) to clockwise vorticity. 
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5. Conclusions 

A new method for the accurate solution of nonlinear, wave-body interaction problems in a 
viscous fluid has been developed. As has been shown in this paper,  the present method is 
robust  and is especially capable of coping with large amplitude of body oscillation. Although 
only heave motion is considered here,  other modes of oscillation, such as sway and roll, or 
their  combination,  can be easily handled. 

For  the heave-motion study, we have provided some typical results corresponding to a 
fairly wide range of frequency and amplitude of heave motion. At high frequency,  
small-amplitude forces agree well with those of linear potential theory in magnitude. The 
difference in phase between the viscous and inviscid cases is due to viscosity effects. 
Nonlinear  and quadratic-damping effects are clearly evident for the case of large amplitude 
of oscillation. At  low frequency, it is shown that heave forces are strongly dependent  on the 
amplitude of oscillation. 

We were not able to provide results at extremely low frequencies, which would have 
required a very large numerical domain in order  to avoid the ill effects of open-boundary 
reflections. Similar difficulty is also encountered in laboratory experiments because of 
tank-size limitations (see e.g. Vugts [26]). The scatter in the experimental data at low 
frequencies are customarily attributed to spurious effects of finite tank sizes. On the 
contrary,  the results of Yeung and Wu [34], which were based on the linearized viscous-flow 
equations,  show that viscosity effects could be important in the low-frequency regime in the 
laboratory scale. The present nonlinear work also seems to point towards that possibility. A 
more  elaborate t reatment  of the open boundary is being developed. Once accomplished, we 
hope to resolve completely the precise role played by viscosity in the low-frequency regime. 
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